Explorando movimentos oscilatórios com estatística descritiva: Uma abordagem educacional com experimentação

Conteúdo do artigo principal

Magno de Oliveira Silva
Bruno Cesar Cayres
Thiago Costa Faria
Daduí Cordeiro Guerrieri
Felipe Leite Coelho da Silva

Resumo

Este estudo investiga a aplicabilidade da estatística descritiva no ensino de movimentos oscilatórios por meio de experimentos. Utilizando uma bancada de ensaio, avaliou-se a eficácia de um amortecedor passivo na mitigação de vibrações em um sistema com um grau de liberdade. A abordagem educacional incorporou experimentação prática para reforçar a compreensão teórica sobre sistemas oscilatórios e amortecimento, alinhando-se às metodologias ativas de aprendizagem e pensamento crítico. Os resultados demonstram que a utilização de água como fluido operante no amortecedor não só oferece uma solução prática e acessível para atenuar as vibrações, mas também promove uma metodologia de ensino que desenvolve o pensamento crítico e a habilidade prática dos estudantes. Esta metodologia, ao integrar a filosofia e metodologias de ensino em engenharia, mostra-se replicável em outras áreas, promovendo uma educação mais prática e interativa.

Downloads

Não há dados estatísticos.

Detalhes do artigo

Como Citar
de Oliveira Silva, M., Cesar Cayres , B. ., Costa Faria, T., Cordeiro Guerrieri, D., & Leite Coelho da Silva, F. . (2024). Explorando movimentos oscilatórios com estatística descritiva: : Uma abordagem educacional com experimentação. EduSer, 16(2). https://doi.org/10.34620/eduser.v16i2.323
Secção
Artigos
Biografia Autor

Magno de Oliveira Silva, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - Cefet/RJ

Graduado em Matemática pela Universidade Castelo Branco (2007) e possui especializações em Novas Tecnologias no Ensino da Matemática pela Universidade Federal Fluminense (2010), além de Estatística Aplicada (2023). Concluiu seu mestrado em Matemática em 2013 pela Universidade Federal Rural do Rio de Janeiro, onde também realizou sua especialização em estatística. Atualmente, integra o quadro efetivo de professores do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca (Cefet/RJ). Sua experiência abrange a área de Matemática, com ênfase no ensino, e tem interesse por pesquisas em Estatística Aplicada, modelos estatísticos paramétricos e não-paramétricos, ensino de matemática, educação em engenharia e EaD.

Referências

Ahern, A., Dominguez, C., McNally, C., O’Sullivan, J. J., & Pedrosa, D. (2019). A literature review of critical thinking in engineering education. Studies in Higher Education, 44(5), 816–828. https://doi.org/10.1080/03075079.2019.1586325

Alabi, O., & Bukola, T. (2023). Introduction to Descriptive statistics. IntechOpen. https://doi.org/10.5772/intechopen.1002475

Altunişik, A. C., Yetişken, A., & Kahya, V. (2018). Experimental study on control performance of tuned liquid column dampers considering different excitation directions. Mechanical Systems and Signal Processing, 102, 59–71. https://doi.org/10.1016/j.ymssp.2017.09.021

Aravena-Reyes, J. (2016). Filosofia e Ensino de Engenharia: a Relação Techné, Lógos e Métis. Revista Brasileira de Ensino de Ciência e Tecnologia, 9(3). https://doi.org/10.3895/rbect.v9n3.2950

Brasil. Ministério da Educação. Conselho Nacional de Educação. Câmara de Educação Superior (2019). Diretrizes curriculares nacionais do curso de graduação em engenharia. (Resolução n.º 2, de 24 de abril de 2019). Brasília, DF.

Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing Engineering Education in P‐12 Classrooms. Journal of Engineering Education, 97(3), 369–387. https://doi.org/10.1002/j.2168-9830.2008.tb00985.x

Cao, L., Gong, Y., Ubertini, F., Wu, H., Chen, A., & Laflamme, S. (2020). Development and validation of a nonlinear dynamic model for tuned liquid multiple columns dampers. Journal of Sound and Vibration, 487, 115624. https://doi.org/10.1016/j.jsv.2020.115624

Chakraborty, S., Debbarma, R., & Marano, G. C. (2012). Performance of tuned liquid column dampers considering maximum liquid motion in seismic vibration control of structures. Journal of Sound and Vibration, 331(7), 1519–1531. https://doi.org/10.1016/j.jsv.2011.11.029

Di Matteo, A., Lo Iacono, F., Navarra, G., & Pirrotta, A. (2015). Innovative modeling of Tuned Liquid Column Damper motion. Communications in Nonlinear Science and Numerical Simulation, 23(1–3), 229–244. https://doi.org/10.1016/j.cnsns.2014.11.005

Dimarogonas, A. D. (1990). The origins of vibration theory. Journal of Sound and Vibration, 140(2), 181–189. https://doi.org/10.1016/0022-460X(90)90523-3

Dimic, G., Rancic, D., Rancic, O. P., & Spalevic, P. (2019). Descriptive Statistical Analysis in the Process of Educational Data Mining. 2019 14th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), 388–391. https://doi.org/10.1109/TELSIKS46999.2019.9002177

Dong, Y. (2023). Descriptive Statistics and Its Applications. Highlights in Science, Engineering and Technology, 47, 16–23. https://doi.org/10.54097/hset.v47i.8159

Erol, M., & Oğur, M. (2023). Teaching large angle pendulum via Arduino based STEM education material. Physics Education, 58(4), 045001. https://doi.org/10.1088/1361-6552/accef4

Estévez-Ayres, I., Alario-Hoyos, C., Pérez-Sanagustín, M. et al. (2015) A methodology for improving active learning engineering courses with a large number of students and teachers through feedback gathering and iterative refinement. International Journal of Technology and Design Education, 25(3), 387–408. https://doi-org.ez108.periodicos.capes.gov.br/10.1007/s10798-014-9288-6

Fávero, L. P., & Belfiore, P. (2024a). Estatística descritiva bivariada. Em Manual de análise de dados: Estatística e machine learning com Excel, SPSS, Stata, R e Python (2.ª ed, p. 97–134). TLC.

Fávero, L. P., & Belfiore, P. (2024b). Estatística descritiva univariada. Em Manual de análise de dados: Estatística e machine learning com Excel, SPSS, Stata, R e Python (2.ª ed, p. 21–96). LTC.

Gao, H., Kwok, K. C. S., & Samali, B. (1997). Optimization of tuned liquid column dampers. Engineering Structures, 19(6), 476–486. https://doi.org/10.1016/S0141-0296(96)00099-5

Gillespie Rouse, A., & Rouse, R. (2019). Third graders’ use of writing to facilitate learning of engineering concepts. Journal of Research in Science Teaching, 56(10), 1406–1430. https://doi.org/10.1002/tea.21581

Hassan, O. A. B. (2011). Learning theories and assessment methodologies – an engineering educational perspective. European Journal of Engineering Education, 36(4), 327–339. https://doi.org/10.1080/03043797.2011.591486

Larson, M. G. (2006). Descriptive Statistics and Graphical Displays. Circulation, 114(1), 76–81. https://doi.org/10.1161/CIRCULATIONAHA.105.584474

Limanto, S., Kartikasari, F. D., & Oeitheurisa, M. (2020). Improved Learning Outcomes of Descriptive Statistics Through the Test Room and Data Processing Features in the Mobile Learning Model. 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE), 139–142. https://doi.org/10.1109/ICIEE49813.2020.9277408

Machado, V., & Pinheiro, N. A. M. (2010). Investigando a metodologia dos problemas geradores de discussões: aplicações na disciplina de Física no ensino de Engenharia. Ciência & Educação (Bauru), 16(3), 525–542. https://doi.org/10.1590/S1516-73132010000300002

Magin, D., & Kanapathipillai, S. (2000). Engineering students’ understanding of the role of experimentation. European Journal of Engineering Education, 25(4), 351–358. https://doi.org/10.1080/03043790050200395

Meirovitch, L., & Parker, R. (2001). Fundamentals of Vibrations. Applied Mechanics Reviews, 54(6), B100–B101. https://doi.org/10.1115/1.1421112

Nussenzveig, H. M. (2014). Curso de física básica: Fluidos, oscilações e ondas, calor (5.ª ed, Vol. 2). Blucher.

Oschepkov, A. A., Kidinov, A. V., Babieva, N. S., Vrublevskiy, A. S., Egorova, E. V., & Zhdanov, S. P. (2022). STEM technology-based model helps create an educational environment for developing students’ technical and creative thinking. Eurasia Journal of Mathematics, Science and Technology Education, 18(5), em2110. https://doi.org/10.29333/ejmste/12033

Paez, T. L. (2006). The history of random vibrations through 1958. Mechanical Systems and Signal Processing, 20(8), 1783–1818. https://doi.org/10.1016/j.ymssp.2006.07.001

Pan, N., Lau, H., & Lai, W. (2010). Sharing e-Learning innovation across disciplines: an encounter between engineering and teacher education. Electronic Journal of e-Learning, 8(1), 31–40.

Pugliese, G. (2020). STEM education-um panorama e sua relação com a educação brasileira. Currículo sem fronteiras, 20(1), 209–232.

R Core Team. (2023). R: A Language and Environment for Statistical Computing. Em R Foundation for Statistical Computing. https://www.r-project.org/

Rao, S. S., & Griffin, P. (2017). Mechanical Vibrations (6.º ed). Pearson.

Raptis, T. P., Passarella, A., & Conti, M. (2019). Data Management in Industry 4.0: State of the Art and Open Challenges. IEEE Access, 7, 97052–97093. https://doi.org/10.1109/ACCESS.2019.2929296

Reed III, J. F., Salen, P., & Bagher, P. (2003). Methodological and statistical techniques: What do residents really need to know about statistics? Journal of Medical Systems, 27(3), 233–238. https://doi.org/10.1023/A:1022519227039

Reis, A., Alves, A., & Wendland, E. C. (2023). Metodologias ativas no ensino superior: Um mapeamento sistemático no contexto dos cursos de engenharia. Educação em Revista, 39. https://doi.org/10.1590/0102-469839012

Resolução CNS n.º 466, de 12 de dezembro de 2012. Diário Oficial da União, Seção 1, p.59. https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=13/06/2013&jornal=1&pagina=59&totalArquivos=140

Rossini, M. R., Alves, M. J., Camargo Filho, P. S. D., Piccinato, M. T., & Amorin, L. H. C. (2024). Análise gravimétrica por meio de smartphones e aprimoramentos nas equações do experimento do pêndulo simples como subterfúgio para o ensino de Física Clássica. Revista Brasileira de Ensino de Física, 46, e20230327. https://doi.org/10.1590/1806-9126-RBEF-2023-0327

Saleem, I., Aslam, M., & Azam, M. (2013). The use of Statistical Methods in Mechanical Engineering. Research Journal of Applied Sciences, Engineering and Technology, 5(7), 2327–2331. https://doi.org/10.19026/rjaset.5.4660

Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9). https://doi.org/10.18637/jss.v033.i09

Souza, F. das C. (2019). Percurso formativo de engenheiros professores da educação profissional e tecnológica. Revista Brasileira de Estudos Pedagógicos, 98(248). https://doi.org/10.24109/2176-6681.rbep.98i248.2883

Stoyanov, M., Gunzburger, M., & Burkardt, J. (2011). Pink noise, 1/f α noise, and their effect on solutions of differential equations. International Journal for Uncertainty Quantification, 1(3), 257–278. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2011003089

Turner, D. P., & Houle, T. T. (2019). Conducting and reporting descriptive statistics. Headache: The Journal of Head and Face Pain, 59(3), 300–305. https://doi.org/10.1111/head.13489